圆柱的体积说课稿

时间:2025-03-30 21:46:23
圆柱的体积说课稿

圆柱的体积说课稿

在教学工作者开展教学活动前,常常要根据教学需要编写说课稿,借助说课稿可以让教学工作更科学化。那么说课稿应该怎么写才合适呢?下面是小编帮大家整理的圆柱的体积说课稿,仅供参考,欢迎大家阅读。

圆柱的体积说课稿1

各位领导、老师:大家好!:

今天,我说课的内容是《圆柱的体积》。我将从说教材、说学情、说教学流程三个方面进行说课。

一、说教材。

1.说内容。《圆柱的体积》这节课选自冀教版六年级数学第12册三单元,主要内容是圆柱体的体积计算公式的推导和应用。

2.教材简析。

这一单元是小学阶段学习几何体知识的最后部分,是几何知识的综合运用。《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆拼成近似的长方形的经验,很容易联想到把圆柱切拼成长方体。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3、分析教材的编写思路、结构特点。

为了更好地理解教材,我认真研读了人教版与冀教版两种不同版本的教材:

冀教版教材:教材由过生日的情景图和两个不易直观比较出体积的茶叶桶,呈现了问题情境。接着由“议一议”启发学生猜想怎样计算圆柱体积,在猜想的基础上,小组合作,动手操作,利用手中的圆柱体学具把一个圆柱体等分成16份、32等份拼成新的拼成长方体。然后提出“说一说”引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式。通过例题1得以简单应用。

人教版教材:教材没有创设生动有趣的问题情境,直接奔入主题猜想怎样计算圆柱体积,直接引导学生利用手中的圆柱体学具,把一个圆柱体等分成16份、32份等新的拼成长方体。引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式,出示例4巩固应用,出示例5应用公式计算容积。

通过对比分析,发现:从教材内容安排和活动设计上,主导思想是一致的,都非常重视动手操作活动,让学生经历探究圆柱体积公式的全过程,在这些教学活动中,着重以引导学生运用自主学习、合作探究两种学习方式交替进行,让他们真正以课堂主人的身份参与全程,教师只是探究活动的组织者、引导者、合作者。不同的是为实现共同的教学目标引出问题的方式不同,冀教版更考虑学生年龄特点,注重学生学习兴趣的激发,让学生主动的去探究。但殊途同归,最终的学习目标是一致的。

4.说教学目标

基于对教材的理解和分析,我分别从知识、能力、情感与态度三方面拟定了本节课的教学目标:

(1)知识目标:探索并掌握圆柱体积公式,能计算圆柱的体积。

(2)能力目标:经历认识圆柱体积,探索圆柱体积计算公式的过程。

(3)情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。

5、说教学重点和难点:

结合学生的实际情况,我把教学重难点确定为:

教学重点:掌握圆柱的体积计算公式,学会计算圆柱的体积。

因为圆柱的体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力和空间想象能力,因此,圆柱的体积公式的推导过程是本节课的难点。

二、说学情。

六年级的学生已经习惯于进行小组合作探究式的学习,具有一定的探究与合作交流的能力。他们在学习几种多边形面积公式及圆的面积公式推导过程中已经能够熟练地运用“割补”的方法实现对图形的转化,在学习圆的周长有关知识及圆柱的侧面积时,他们也对“化曲为直”的思想有所体会和运用,为了实现上述教学目标,我精心进行教学设计,引领学生学会运用数学的思维方式去认识世界。

  三、说教学流程。

合理安排教学流程是教学成功的关键。根据六年级学生的认知水平和特点,针对教学目标,把握重点,突破难点,我设计了以下几个步骤来完成教学。

(一)口算:

1、口头答出11至20各数的平方。

2、口头答出3.14与一位数的积。

这样设计的目的除了培养口算习惯,提高口算能力外,还为本节课计算圆柱的体积做了充分的准备(涉及到底面积计算)。

(二 )创设情境 。

由多媒体播放生日快乐歌曲,谈谈听到歌声想到了什么?记得爸爸、妈妈的生日吗?然后出示亮亮和爷爷同一天过生日的情境图,说一说发现了什么?想到了什么?目的是使学生了解到两个蛋糕都是圆柱形的,爷爷的生日蛋糕大,就是蛋糕的体积大。初步感受认识圆柱的体积,同时进行情感教育。

然后拿出两个不易直观比较出体积大小的茶叶桶,提出:你能说出哪个茶叶桶的体积大吗?用眼睛无法看出哪个茶叶筒的体积大,能不能想个办法比较两个茶叶桶体积的大小?从而使学生感受到学会计算圆柱体积的必要性。

设计意图:这样通过亲切、自然的课前交流,使学感受到数学就在我们身边,给学生营造一种轻松愉快的学习氛围,激发起学生的探究欲望,从而引出新课。

(三)、自学。

首先提出怎样求圆柱的体积呢?联系以前学过的知识大胆猜一猜,想一想该怎样推导圆柱的体积公式呢?引导学生回忆圆的面积公式的推导过程并用课件展示,同时联想长方体的体积等于底面积乘高,学生可能会猜出把圆柱转化为学过的长方体来计算。

猜得对不对呢?接着学生小组合作,动手实验,利用手中的圆柱体学具把一个圆柱体等分成16份拼成一个近似的长方体。引导学生观察思考:拼成的长方体和圆柱体有什么关系?你们发现了什么?小组讨论。给学生充分的时间和空间进行组内交流,得出结论。

设计意图:通过学生的合理猜想,独立操作,仔细观察,集体讨论,交流总结,学会用转化的思想解决数学问题 。

(四)、展示。

首先每个小组派代表到前面展示学习成果,得出将圆柱体等分成16份可以拼成一个近似的长方体:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积,其他小组补充,质疑,从而归纳推导出圆柱的体积=底面积×高,用字母表示V=Sh。

最后教师再用多媒体课件演示将圆柱体等分成16份再重新组合,看看可以得出一个什么样的立体图形?印证学生的结论。

设计意图:让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破重点,化解难点。获得自主学习的快感。

(五)自学并展示2。

出示例1:一根圆柱形钢材,底面积是50平方厘米,高是1.5米。它的体积是多少立方厘米?先由学生读题自己独立完成,请一位学生到前面用展台展示,战士时重点提 ……此处隐藏22588个字……想圆柱的体积是否也可以用“底面积×高”计算。这是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。同样,圆柱与圆锥体积之间,我们也可做出相近的猜想。

圆柱的体积说课稿11

我说的内容是:九年义务教育六年制小学教科书数学第十二册第三单元中的圆柱体的体积。

因为这是首次学习含有曲面的几何体的体积,不论是思考方法,还是对立体图形的认识上,都更加深入了一步,难度也加大了。所以本节的重点是:对圆柱体体积公式的理解。难点是:圆柱体体积公式的推导过程。

教学目标是:使学生知道圆柱体的体积公式推导过程;理解并掌握圆柱体的体积公式及相关的推论。并能正确运用公式解决一些简单的实际问题。通过对圆柱体体积公式的教学,加深学生对立体图形的认识,培养学生的观察能力,抽象和概括能力及综合运用能力,发展学生的空间观念,同时渗透一些关于极限的辨证唯物主义思想。

学习本节课应具备的旧知识是:1、长方体的体积公式及推导过程。2、圆面积公式的推导过程。

在教学中就是要运用圆面积公式的推导方法,将圆柱体转化为长方体,从而由长方体体积公式推导出圆柱体体积公式。因此根据本节课的特点我采用的教学方法是:

1、有目的的运用启发引导的方法组织教学。

2、采用演示实验的方法,让学生观察比较,从而发现规律,找出体积公式。

3、适当采用“尝试——失败——总结——再尝试——再总结”的方法,引导学生找到推导公式的合理方法。

4、利用多变的练习,加深学生对公式的理解,找到公式的根本内涵。但是要注意循序渐进,由易到难,由简到繁。

在学法指导上,主要是让学生学会观察、比较,归纳概括出体积公式。通过直观实验,吸引学生主动、认真观察图形的拼接过程,积极回答观察结果,主动参与到教学中去,并且在教师的启发下,进行归纳概括。培养学生的自学能力及概括能力。

本节课所需教具为:圆柱体割拼组合教具及事先写好习题的小黑板。

教学一开始,首先复习。目的是:一是通过复习旧知识,为新课作好准备;二是引出新课。

一开始先复习体积的概念及长方体的体积公式。这个练习可采用提问的方式,但是这些知识已学过较长时间,所以适当的时侯教师要加以启发提示。

接下来,教师引导学生回忆长方体体积公式的推导过程,及圆面积公式的推导方法,为新课做准备。

然后,提问:圆柱体的特点是什么?圆柱体的侧面积、表面积公式是什么?由于这些内容刚刚学过,学生很容易回答,可以提问基础较差的学生,并加以鼓励,使他们树立信心,提高兴趣,以便学习新课。

通过以上复习,巩固了旧知识,为学习新知识做好了铺垫,同时调动了全体学生的学习兴趣。利用这一有利时机,教师及时引导、设疑:

圆柱体也是立体图形,也会占有一定的空间,大家一定很想知到道怎样求出这个空间的大小,好,今天我们就来学习求它的方法。——板书课题:圆柱体的体积

这样就顺利转入了新课的学习。

这时教师出示圆柱体模型。

首先引导学生用长方体公式的推导方法尝试。提问:“我们学过的长方体体积是用单位体积的小正方体块来量出的,现在我们也用同样的方法来量一下,现在这个圆柱体的体积是多少?”

学生反复尝试后回答:“无法量出。”

这时教师再问:“什么地方量不出来?为什么?”

学生回答:“圆柱体的侧面是曲面,无法量出。”

在学生尝试失败的基础上,促使他们改变思路,去寻找新的方法。这样充分利用学生的好奇心理,调动学生情绪,转入圆柱体体积公式的教学。

教师启发提问:“圆柱体上下两面是什么形?圆面积公式是怎么得到的?”通过学生的回答,引出新思路:用割拼的方法将它转化为其他的图形。

得到了新的方法以后,教师进行演示实验1:先将圆柱沿底面平分割成8等份,对拼成一个近似长方体。学生观察割拼过程。

教师提出问题:“这个圆柱体拼成了一个近似的什么立体图形?为什么说它是近似的?它的哪一部分不是长方体的组成部分?”

学生回答后,接着再进行演示实验2:将圆柱体沿底面平分16等份,再拼成近似的长方体。

再问:“这次是不是更象长方体了?”

这时教师启发学生想象;“把它平分成很多很多等份,这样拼成的图形将会怎样?”

教师总结:“将会无限趋近于长方体,并且最终会得到一个长方体。”

然后及时引导学生观察这个长方体,并把它与圆柱体进行比较,提问:“这个长方体的哪部分与圆柱体相同?”因为模型各面的颜色不同,所以学生会很快回答出来:“底面积与高。”

“那么这个长方体体积与圆柱体体积有什么关系?”学生回答:“相同。”

“长方体的体积是怎样计算的?”学生回答:“底面积乘以高。”

“那么圆柱体是否也可以这样算呢?”学生回答:“是的。”

这时教师根据学生的回答,及时板书这两个公式。

通过以上的教学,引导学生归纳概括出了圆柱体的体积公式。这样先通过复习做知识的铺垫,然后由学生进行尝试,充分运用思维的迁移规律,用圆面积公式的推导方法搭起了桥梁,顺利地实现了本节课的第一个目标。并且在推导过程中渗透了关于极限的辨证唯物主义思想。

学生通过尝试得到了成功的喜悦,思想高度兴奋。教师及时利用这一时机,将公式向深处拓展。设问:“如果不知道圆柱体的底面积和高,怎么求体积?”学生考虑,教师出示尝试题:

1、已知圆柱体的底面半径和高,怎样求体积?

2、已知圆柱体的底面直径和高,怎样求体积?

3、已知圆柱体的底面周长和高,怎样求体积?

4、已知圆柱体的侧面积和高,怎样求体积?

学生分组讨论。讨论完毕后,每组选一名代表回答,其他同学做适当补充。学生回答完毕后,教师及时进行总结,并且板书有关公式的推论。

通过以上练习,避免了学生只注意了公式的表面特征,而忽略了公式的本质特征。使学生明确,不论条件怎样变化,最终都要归到底面积乘以高上来。从而使学生理解了本公式的内涵,为灵活运用公式做好了知识的准备。

最后要求学生用字母表示公式。由于此方法学生早已熟悉,所以可全班集体回答。

学生理解和掌握了公式后,教师及时出示习题,指导学生将公式应用于实际:

(出示准备好的小黑板)

例4、一根圆柱形钢材,底面面积是50平方厘米,高是2·1米。它的体积是多少立方厘米?

例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米。这个水桶的容积是多少立方分米?

提问:“这两道题是否要进行单位换算?各应选用什么公式?”学生回答完毕后,一起独立完成。教师巡视检查,发现问题,及时补救。

最后,对本节课进行小结。提出应用公式时应注意的问题:1、仔细审题,弄清条件的变化。2、单位名称要统一。

布置课后作业。

本节课到此结束。

《圆柱的体积说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式